

Invasive Shothole Borers

Bea Nobua-Behrmann Randall Oliver, and John Kabashima

UC Cooperative Extension

<u>benobua@ucanr.edu</u> <u>rdoliver@ucanr.edu</u> <u>jnkabashima@ucanr.edu</u>

www.ishb.org

Shothole borers website:

ishb.org

Small Beetle, Big Problem

Invasive shothole borers (ISHB) are two closely related species of small, non-native, beetles that bore into trees. ISHB introduce fungi that cause a tree disease called *Fusarium* dieback (FD). The ISHB-FD pest-disease complex is responsible for the death of thousands of trees in Southern California and poses an imminent threat to the integrity of our urban and natural forests.

Invasive shothole borers attack a wide variety of tree species including avocados, common landscape selections, and California native species in urban and wildland environments.

For more information about invasive shothole borers and *Fusarium* dieback, view the video below and explore this website.

Online Training

ISHB eXtension Training! The course is served by the eXtension national online learning platform.

ISHB Detection & Management Assessment

Before reporting infestations, take the ISHB Detection Assessment to see if your tree is suffering from ISHB damage.

Shothole borers Outline of this talk

- 1. ISHB biology
- 2. ISHB effects (Kurt will tell us more! ⁽³⁾)
- 3. ISHB management options
- 4. ISHB planning and management considerations
- 5. Discussion

Shothole borers Outline of this talk

- 1. ISHB biology
- 2. ISHB effects (Kurt will tell us more! ⁽ⁱ⁾)
- 3. ISHB management options
- 4. ISHB planning and management considerations
- 5. Discussion

My goal is for you to:

- 1. ~ understand the biology of this pest and its effects
- 2. ~ begin lerning to recognize ISHB
- 3. ~ understand management options
- 4. ~ have a good overview of the educational resources

Shothole borers My goals and your follow-up ©

What you will need to do:

- a. Spend some time with the ISHB.ORG website
- b. Decide on the management options you can accept
- c. Figure out the funding, including funding for REPLANTING
- d. Set up a monitoring and/or trapping plan
- e. Monitor \rightarrow Manage/Remove \rightarrow Monitor \rightarrow **Replant**!

ISHB lessons-learned from John K. (boring since 2013)

- 1. Monitoring is key (visual and trapping)
 - 2. So: have a tree inventory before the borers arrive! And learn to recognize ISHB infestations
 - 3. Amplifier trees: identify and remove
 - 4. Low-to-medium severity: insecticide + fungicide
 imidacloprid (soil, inject.), bifenthrin (bark); dinotefuran
 + fungicide: tebuconazole, or *Bacillus subtilis*
 - 5. IF monitored, then OK to only treat infested trees
 - 6. Borers LOVE *Botryosphaeria*: so, remove Bot canker-infested branches, and check for Bot!

Invasive Shot-Hole Borers / Fusarium Dieback

Polyphagous Shot Hole Borer (PSHB)

Photos | Akif Eskalen - UCR

Fusarium euwallaceae

Kuroshio Shot Hole Borer (KSHB)

Photos | Akif Eskalen - UCR

Fusarium sp.

Morphologically indistinguishable (look the same)

- DNA analysis
- ID the associated fungus

How did they get here?

Packing crates

Shothole borers: https://ucanr.edu/sites/pshb/

ISHB Distribution

Invasive Shot-Hole Borer / Fusarium Dieback

ISHB effects on tree trunk and branches

7" 18cm

Infestation in main trunk

Infestation in branches

24" 60cm

Akif Eskalen, UCR / John Kabashima UCCE

Life cycle of Shot Hole Borers / Fusarium Dieback

Females make galleries in the wood and lay eggs.

Eskalen, 2016 - UC Riverside, www.eskalenlab.ucr.edu

Life cycle of Shot Hole Borers / Fusarium Dieback

Developing larvae feed on the fungus in the gallery; mate with siblings.

Females leave the gallery, staying on the same host tree to make their own gallery.

Fungus continues to colonize the wood beyond the gallery wall.

Eskalen, 2016 - UC Riverside, www.eskalenlab.ucr.edu

Life cycle of Shot Hole Borers / Fusarium Dieback

When the host tree dies, adults leave the host to find a new host.

Eskalen, 2016 - UC Riverside, www.eskalenlab.ucr.edu

Amplifier tree concept

When some preferred host trees are infested, beetles will STAY on their "birth tree" until it declines

- a. Some trees get badly infested and "produce" a lot of beetles
- b. Amplifiers will not recover; and "their" beetles will pressure neighboring trees
- c. Remove amplifier trees!
- d. Use traps to assess effect
- e. Then replant!

Photo | Beatriz Nobua-Benhrmann – UCCE Orange

Which tree species are susceptible?

247 species of trees attacked,

BUT:

"only" **78 species of trees** can support ISHB reproduction

AND

"only" about 17 tree species are killed

See: UC IPM Pest Note

https://ipm.ucanr.edu/legacy_assets/ pdf/pestnotes/pninvasiveshotholebore r.pdf

Table 1. Current list of confirmed ISHB-FD reproductive hosts.

Hosts killed by ISHB-FD

Latin Name	Common Name
Acer buergerianum	Trident maple
Acer macrophyllum	Big leaf maple*
Acer negundo	Box elder*
Acer palmatum	Japanese maple
Liquidambar styraciflua	American sweet gum
Parkinsonia aculeata	Palo verde
Platanus racemosa	California sycamore*
Platanus x acerifolia	London plane
Populus fremontii	Fremont cottonwood*
Populus nigra	Black poplar*
Populus trichocarpa	Black cottonwood*
Quercus lobata	Valley oak*
Quercus robur	English oak
Ricinus communis	Castorbean
Salix gooddingii	Black willow*
Salix laevigata	Red willow*
Salix lasiolepis	Arroyo willow*

Hosts NOT killed by ISHB-FD

Latin Name	Common Name
Acacia melanoxylon	Australian blackwood
Acacia mearnsii	Black wattle†
Acacia spp.	Acacia
Acer paxii	Evergreen maple
Acer saccharinum	Silver leaf maple
Aesculus californica	California buckeye*
Ailanthus altissima	Tree of heaven
Albizia julibrissin	Mimosa
Alectryon excelsus	Titoki
Alnus rhombifolia	White alder*
Archontophoenix cunninghamiana	King palm

Hosts NOT killed by ISHB-FD

	Common Name		
Latin Name	Common Name		
Cocculus laurifolius	Laurel leaf snailseed tree		
Combertum kraussii	Forest bushwillow†		
Corymbia ficifolia	Red flowering gum		
Cupaniopsis anacardioides	Carrotwood		
Dombeya cacuminum	Strawberry tree		
Erythrina caffra	Coast coral tree		
Erythrina coralloides	Coral tree		
Erythrina falcata	Brazilian coral tree		
Fagus crenata	Japanese beech		
Ficus altissima	Council tree		
Ficus carica	Black mission fig		
Gleditsia triacanthos	Honey locust		
Harpullia pendula	Tulip wood		
Howea forsteriana	Kentia palm		
llex cornuta	Chinese holly		
Jacaranda mimosifolia	Jacaranda		
Koelreuteria bipinnata	Chinese flame tree		
Magnolia grandiflora	Southern magnolia		
Magnolia virginiana	Sweet bay		
Persea americana	Avocado		
Platanus mexicana	Mexican sycamore		
Podalyria calyptrata	Keurtije†		
Populus tremuloides	Quaking aspen		
Prosopis articulata	Mesquite*		
Psoralea pinnata	Fountain bush†		
Pterocarya stenoptera	Chinese wingnut		
Ptychosperma elegans	Solitaire palm		
Quercus agrifolia	Coast live oak*		
Quercus chrysolepis	Canyon live oak*		
Quercus engelmannii	Engelmann oak*		
Quercus macrocarpa	Bur oak		

Which tree species should you focus on?

~ the 17 species that get killed

~ especially:

Box Elder Sycamore Willows Castorbean

In city parks & street trees:

London Plane Tree English oak

~ these species will be hit FIRST, and they will be hit HARDEST

~ once these preferred hosts are near death, the beetles will move on to less desirable hosts Table 1. Current list of confirmed ISHB-FD reproductive hosts.

Hosts killed by ISHB-FD

Latin Name	Common Name		
Acer buergerianum	Trident maple		
Acer macrophyllum	Big leaf maple*		
Acer negundo	Box elder*		
Acer palmatum	Japanese maple		
Liquidambar styraciflua	American sweet gum		
Parkinsonia aculeata	Palo verde		
Platanus racemosa	California sycamore*		
Platanus x acerifolia	London plane		
Populus fremontii	Fremont cottonwood*		
Populus nigra	Black poplar*		
Populus trichocarpa	Black cottonwood*		
Quercus lobata	Valley oak*		
Quercus robur	English oak		
Ricinus communis	Castorbean		
Salix gooddingii	Black willow*		
Salix laevigata	Red willow*		
Salix lasiolepis	Arroyo willow*		

What are we looking for? Holes! < 1mm, perfectly round

Number of holes indicate SEVERITY

- Low Infestation Level: < 50
- Moderate Infestation Level: ≥ 50 and < 150
- Heavy Infestation Level: ≥150
- Severe Infestation Level: ≥ 150 + ISHB-related dieback

 \rightarrow Severe infestation = no recovery

 \rightarrow Are the holes still "active?" Paint over, and see if the beetle re-opens the hole

1: Low (<50)

3: Heavy (>150) Without Dieback

4: Severe (>150) With Dieback

Control Options

ISHB Infestation Level & Management Options for High Value Trees

Host Type	Hazard Level	No Infestation	Low Infestation	Moderate Infestation	Heavy Infestation	Severe Infestation	
Reproductive Host	Low	Monitor	Treat and/or remove infested branches*	Treat and/or remove infested branches*	Treat and/or remove infested branches*	Remove tree & stump	
Reproductive Host	High	Monitor	Treat and/ or remove infested/hazard branches*	Treat and/or remove infested branches*	Remove infested branches*, or remove tree & stump	Remove tree & stump	
Non- Reproductive Host	Low	Monitor	Monitor	Notify your local UCCE office; consult with ISHB-FD experts to determine if species is a new reproductive host			
Non- Reproductive Host	High	Monitor	Monitor	Notify your local UCCE office; consult with ISHB-FD experts to determine if species is a new reproductive host			

Wood management

- 1. Grind out the stump, if at all possible
 - ~ beetles will continue to emerge from stump!
- 2. Chipping: to 1" (>99% kill), or to 3" (98% kill)
 ~ for total kill, either compost or solarize chips
- Wood: solarize on-site, or kiln-dry
 ~ solarization may take excessively long;
 DO NOT MOVE un-covered wood!

Resources

1. ISHB website

- handouts, webinars, videos
 you should spend 1-2 hours here! ©
- 2. eXtension on-line course (that's "E-extension" ⁽ⁱ⁾)
 ~ requires registration (but is free!)
- 3. County Ag. Commissioner's Office
- 4. California Dept. of Food and Agriculture
- 5. UC Cooperative Extension, and UC Davis

